188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors: preclinical assessment.

نویسندگان

  • Mohamed Altai
  • Helena Wållberg
  • Hadis Honarvar
  • Joanna Strand
  • Anna Orlova
  • Zohreh Varasteh
  • Mattias Sandström
  • John Löfblom
  • Erik Larsson
  • Sven-Erik Strand
  • Mark Lubberink
  • Stefan Ståhl
  • Vladimir Tolmachev
چکیده

UNLABELLED Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of (99m)Tc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide-based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate (188)Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)-expressing tumors. METHODS ZHER2:V2 was labeled with (188)Re using a gluconate-containing kit. Targeting of HER2-overexpressing SKOV-3 ovarian carcinoma xenografts in nude mice was studied for a dosimetry assessment. RESULTS Binding of (188)Re-ZHER2:V2 to living SKOV-3 cells was demonstrated to be specific, with an affinity of 6.4 ± 0.4 pM. The biodistribution study showed a rapid blood clearance (1.4 ± 0.1 percentage injected activity per gram [%ID/g] at 1 h after injection). The tumor uptake was 14 ± 2, 12 ± 2, 5 ± 2, and 1.8 ± 0.5 %IA/g at 1, 4, 24, and 48 h after injection, respectively. The in vivo targeting of HER2-expressing xenografts was specific. Already at 4 h after injection, tumor uptake exceeded kidney uptake (2.1 ± 0.2 %IA/g). Scintillation-camera imaging showed that tumor xenografts were the only sites with prominent accumulation of radioactivity at 4 h after injection. Based on the biokinetics, a dosimetry evaluation for humans suggests that (188)Re-ZHER2:V2 would provide an absorbed dose to tumor of 79 Gy without exceeding absorbed doses of 23 Gy to kidneys and 2 Gy to bone marrow. This indicates that future human radiotherapy studies may be feasible. CONCLUSION (188)Re-ZHER2:V2 can deliver high absorbed doses to tumors without exceeding kidney and bone marrow toxicity limits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules.

Affibody molecules present a new class of affinity proteins, which utilizes a scaffold based on a 58-amino acid domain derived from protein A. The small (7 kDa) Affibody molecule can be selected to bind to cell-surface targets with high affinity. An Affibody molecule (ZHER2:342) with a dissociation constant (Kd) of 22 pM for binding to the HER2 receptor has been reported earlier. Preclinical an...

متن کامل

Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re.

Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal re...

متن کامل

Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors

Affibody molecules are small (7 kDa), non-immunoglobulin scaffold proteins with a potential as targeting agents for radionuclide imaging of cancer. However, high renal re-absorption of Affibody molecules prevents their use for radionuclide therapy with residualizing radiometals. We hypothesized that the use of Affibody-based peptide nucleic acid (PNA)-mediated pretargeting would enable higher a...

متن کامل

Comparative Evaluation of Anti-HER2 Affibody Molecules Labeled with 64Cu Using NOTA and NODAGA

Imaging using affibody molecules enables discrimination between breast cancer metastases with high and low expression of HER2, making appropriate therapy selection possible. This study aimed to evaluate if the longer half-life of 64Cu (T1/2 = 12.7 h) would make 64Cu a superior nuclide compared to 68Ga for PET imaging of HER2 expression using affibody molecules. The synthetic ZHER2:S1 affibody m...

متن کامل

Site-Specific Radioiodination of HER2-Targeting Affibody Molecules using 4-Iodophenethylmaleimide Decreases Renal Uptake of Radioactivity

Affibody molecules are small scaffold-based affinity proteins with promising properties as probes for radionuclide-based molecular imaging. However, a high reabsorption of radiolabeled Affibody molecules in kidneys is an issue. We have shown that the use of (125)I-3-iodo-((4-hydroxyphenyl)ethyl)maleimide (IHPEM) for site-specific labeling of cysteine-containing Affibody molecules provides high ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 55 11  شماره 

صفحات  -

تاریخ انتشار 2014